

Front - End Development
Introduction to UI stack

Armine Grigoryan
02/26/2021

 ‹#›

Building Success Together®

Armine Grigoryan

Safeway - UI Lead

▪ Manage web applications in Catalog

Introduction: Speaker

 ‹#›

Building Success Together®

▪ Web Best Practice
▪ Chrome Developer Tool
▪ UI Stack
▫ HTML5/CSS3
▫ Javascript/ES6/Typescript
▫ Angular
▫ Angular CLI
▪ Setting up the local environment and workspace
▪ Exercise
▪ Catalog UI overview

Agenda

Web Best Practice

 ‹#›

Building Success Together®

When doing web development, the main source of uncertainty comes from the fact that you don't know what
combination of technology each user will use to view your web site:

● User 1 might be looking at it on an iPhone, with a small, narrow screen.
● User 2 might be looking at it on a Windows laptop with a widescreen monitor attached to it.
● User 3 might be blind, and using a screen reader to read the web page out to them.
● User 4 might be using a really old desktop machine that can't run modern browsers.

Because you don't know exactly what your users will use, you need to design defensively — make your web site as
flexible as possible, so that all of the above users can make use of it, even if they might not all get the same
experience. In short, we are trying to make the web work for all, as much as possible.

You'll come across the below concepts at some point in your studies.

Web Best Practice

 ‹#›

Building Success Together®

● Cross-browser compatibility is the practice of trying to make sure your webpage works
across as many devices as possible.

a. If you use a well-established framework, whether for styling (eg Bootstrap) or a
JavaScript framework (such as Angular or React), generally this means someone else
has taken care of a lot of the cross-browser compatibility work for you.

● Responsive web design is the practice of making your functionality and layouts flexible so
they can automatically adapt to different browsers and devices.

b. Bootstrap gives you ability to create flexible and responsive web layouts with much
less efforts.

c. Bootstrap 4 is the newest version of Bootstrap; with new components, faster
stylesheet and more responsiveness.

d. Bootstrap 4 supports the latest, stable releases of all major browsers and platforms
e. https://kinsta.com/blog/responsive-web-design/

Web Best Practice

 ‹#›

Building Success Together®

● Performance means getting web sites to load as quickly as possible, but also making them
intuitive and easy to use so that users don't get frustrated and go somewhere else.

a. Lazy Loading technic
b. Minifying libraries (CSS, JS)
c. Reduce image size

d. Reduce the number of HTTP requests
● Accessibility means making your websites usable by as many different kinds of people as

possible (related concepts are diversity and inclusion, and inclusive design). This includes
people with visual impairments, hearing impairments, cognitive disabilities, or physical
disabilities.

Web Best Practice

 ‹#›

Building Success Together®

Chrome DevTools is a set of web developer tools built directly into the Google Chrome browser.
DevTools can help you edit pages on-the-fly and diagnose problems quickly, which ultimately
helps you build better websites, faster.

https://developers.google.com/web/tools/chrome-devtools

Debug with Developer Tools

 ‹#›

Building Success Together®

Chrome Developer Tool: elements panel

 ‹#›

Building Success Together®

Chrome Developer Tool: sources panel

 ‹#›

Building Success Together®

Chrome Developer Tool: network panel

 ‹#›

Building Success Together®

▪ HTML5/CSS3
▪ Javascript/ES6/Typescript
▪ Angular
▪ Angular CLI

UI Stack

 ‹#›

Building Success Together®

● HTML, the language that gives web content structure and meaning
● CSS, the language used to style web pages
● JavaScript, the scripting language used to create dynamic functionality on the web

UI Stack

 ‹#›

Building Success Together®

Angular is a development platform, built on TypeScript. As a platform, Angular includes:

● A component-based framework for building scalable web applications
● A collection of well-integrated libraries that cover a wide variety of features, including routing, forms

management, client-server communication, and more
● A suite of developer tools to help you develop, build, test, and update your code

Angular Life Cycles or Lifecycle Hooks:

ngOnChanges(): ngOnInit(): ngDoCheck(): ngAfterContentInit(): ngAfterContentChecked(): ngAfterViewInit():
ngAfterViewChecked(): ngOnDestroy():

Directives:
NgModel, NgFor, NgIf
<input [(ngModel)]="currentItem.name" />
<div *ngIf="currentCustomer">Hello, {{currentCustomer.name}}</div>
<div *ngFor="let item of items">{{item.name}}</div>

 Angular Basic Architecture

 ‹#›

Building Success Together®

Modules: NgModule
The purpose of a NgModule is to declare each thing you create in Angular, and group them together
Example:
@NgModule({
declarations: [SomeComponent, SomeDirective, SomePipe],

providers: [SomeService]

})

Components/Services and Observables
Components are the fundamental building blocks of Angular applications. They display data on the screen, listen for user input,
and take action based on that input.

Services are usually implemented through dependency injection. When we talk about an injectable service class,
we’re simply talking about common, service-oriented code that can be reused between separate components.
Observable are used within Angular itself, including Angular’s event system and its http client service. To use
observable, Angular uses a third-party library called Reactive Extensions (RxJS)

 Angular Basic Architecture

 ‹#›

Building Success Together®

Project in Visual Studio

IDE: Visual Studio Code

 ‹#›

Building Success Together®

Basics GIT commands: git pull origin develop,
git push origin <master>, command git checkout -b <branch-name>, git merge <branch-name>

Gitbox

Git

Setup Development
Environment

 ‹#›

Building Success Together®

● Node
● Npm
● Angular CLI
● Text-editor - Visual Studio code

Step 1:Open a browser type https://nodejs.org/en/ download, and install node js based on your window bit.

Development Environment

 ‹#›

Building Success Together®

Step 2

After installing node js, open command prompt type node –v to check installed version of node js.

Development Environment

 ‹#›

Building Success Together®

Type npm –v to check npm version. If both the commands show their respective versions it means node is installed
successfully.

Development Environment

 ‹#›

Building Success Together®

Step 3: Open browser type https://cli.angular.io/ check command to install Angular CLI.
Step 4: Open command prompt, type command npm install –g @angular/cli. It will install CLI globally where g
represents globally. To check Angular CLI installed type command ng –v

Development Environment

 ‹#›

Building Success Together®

Step 5: Open command prompt type npm install –g typescript, it will install TypeScript in your system. Now type tsc –
version in command prompt to check the version of typescript installed.

Development Environment

 ‹#›

Building Success Together®

Step 6
Open browser, type https://code.visualstudio.com/ download, and install visual code editor.
Setup local env: https://angular.io/guide/setup-local
if you have EACCESS errors please use Sudo: https://docs.npmjs.com/resolving-eacces-permissions-errors-when-
installing-packages-globally

Angular tutorial:
https://angular.io/tutorial
https://angular.io/tutorial/toh-pt0
https://github.com/johnpapa/angular-tour-of-heroes

Open Visual Studio and click on Terminal
Create new projects: https://angular.io/guide/setup-local

npm install -g @angular/cli
ng new my-app
cd my-app
ng serve --open

Development Environment

 ‹#›

Building Success Together®

MY-APP Page

 ‹#›

Building Success Together®

Basic exercise:
▪ Create an input field
▫ <input id='text'/>
▪ Create a button
▫ <button class='btn' (click)='show()'>Show</button>
▪ Call a method on button click
▫ show(){

 console.log(this.email);
 }

▪ Create a drop down
▫ <select >

 <option *ngFor="let item of frameworks">{{item}}</option>
</select>

frameworks=['Angular', 'React', 'Vue']

Basic Examples

 ‹#›

Building Success Together®

▪ Example with *ngIf
▫ </div>

 <div *ngIf='currentUser'> Hello {{user.name}}
</div>

currentUser: boolean = false;
▪ Example with *ngFor
▫ <select >

 <option *ngFor="let item of frameworks">{{item}}</option>
</select>

 }

Basic Examples

 ‹#›

Building Success Together®

▪ One way binding
▫ <input [value] = 'email' />

email = ‘me@example.com’;
▪ Two way binding
▫ <input [(ngModel)]= 'email' />

email;
show(){

 console.log(this.email);
 }

Basic Examples

 ‹#›

Building Success Together®

▪ Search for a country and display country with its capital.
▫ create an input box and a button
▫ display the result on button click
▫ for example: search for Italy and display: Italy: Rome
▪ Populate all countries names, capitals and populations on button click
▫ using *ngFor populate list of countries

List of countries will be send separately

Assignments

 ‹#›

Building Success Together®

Create a new application:
in Terminal type ng new myApp, go to myApp(cd myApp)
ng new myApp
cd myApp
ng serve --open

You should see page in localhost.
Lets delete all content in app.component.html and save. The page automatically is
refreshed.
Continue to install all dependencies we need for app. Run in Terminal:
npm install, npm install bootstrap, npm install @ng-bootstrap/ng-bootstrap.
In project file folder click on index.html and insert these libraries:
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.12.1/css/all.css"
crossorigin="anonymous">
 <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.0-
beta3/dist/css/bootstrap.min.css" crossorigin="anonymous">

Assignments

 ‹#›

Building Success Together®

Check package.json file for dependencies :
"dependencies": {
 "@angular/animations": "~11.2.5",
 "@angular/common": "~11.2.5",
 "@angular/compiler": "~11.2.5",
 "@angular/core": "~11.2.5",
 "@angular/forms": "~11.2.5",
 "@angular/platform-browser": "~11.2.5",
 "@angular/platform-browser-dynamic": "~11.2.5",
 "@angular/router": "~11.2.5",
 "@ng-bootstrap/ng-bootstrap": "^9.1.0",
 "bootstrap": "^4.6.0",
 "rxjs": "~6.6.0",
 "tslib": "^2.0.0",
 "zone.js": "~0.11.3"
 },

Assignments

 ‹#›

Building Success Together®

1. Create Header and Footer and components
a. ng g c header
b. ng g c footer
c. ng g c england
d. ng g c france
e. ng g c spain
f. ng g c greece
g. style header and footer(color it)
2. Have a buttons or hyperlinks (countries: France, Greece, England or any).
3. Each item in the header navigates to page with some pictures about the country
4. Have some content in Footer.(Careers, About Us and etc)
5. Design each page with some text or pictures.

Assignments

 ‹#›

Building Success Together®

Template

england france Greece Spain Account

 dynamic content

 ‹#›

Building Success Together®

Include selectors in app.component.html to run application main page

<header></header>
<div class='content' role='main'>
 <div class='dynamic-container col-md-10 col-xl-10'>
 <router-outlet></router-outlet>
 </div>
</div>
<footer></footer>

<router-outlet> informs Angular to update the application view with the component for the selected route.

app.component.html

 ‹#›

Building Success Together®

Styling dynamic container:

.dynamic-container{
 margin-top: 35px;
 height: calc(100vh-70px);
 overflow-y: auto;
 overflow-x: hidden;
 padding: 50px 20px 20px 50px;
}

app.component.css

 ‹#›

Building Success Together®

Add pictures in the england.component.html:

<div class='imgContainer' >

</div>
And styling in england.component.css:
.img{
 height: 350px;
 width: 350px;
 padding-left: 5px;
}

Create England template

 ‹#›

Building Success Together®

First, we need to create an account component:
Type in Terminal: ng g c account
In account.component.ts need to import FormBuilder and Validators modules:
import { FormBuilder,Validators } from '@angular/forms';
Lets start to create template in account.component.html:

Create Account page

 ‹#›

Building Success Together®

<p>account works!</p>
<div>
<form [formGroup]="userForm" (ngSubmit)="onSubmit1()">

 <p>Sign up</p>

 <div>
 <div>
 <input type="text" formControlName="firstName" class="form-control input" placeholder="First name">
 </div>
 <div>
 <input type="text" formControlName="lastName" class="form-control input " placeholder="Last name">
 </div>
 </div>

 <input type="email" formControlName="email" class="form-control input" placeholder="E-mail">
 <div>
 <button type="submit">Sign in</button>
 </div>
 </form>
 <div >
 <ngb-alert *ngIf="showMessage" type="danger" >{{ invalidEntry }}</ngb-alert>
 <!-- <div class= "invalid-text" *ngIf="showMessage">
 {{invalidEntry}}
 </div> -->
 </div>
</div>

Account template(html)

 ‹#›

Building Success Together®

.input{
 width: 15em;
 height: 2em;
 margin-bottom: 1em;
}
 .invalid-text{
 color:red;
 }

Account page CSS

Catalog UI

 ‹#›

Building Success Together®

Catalog UI is a single page application.

Single Page Applications are web applications that load a single HTML page and only a part of the page instead of the entire
page gets updated with every click of the mouse.

As the client clicks certain parts on the webpage, only the required part of the information is fetched from the
server and the page is rewritten dynamically. With certain clicks we call api using GET, POST , PUT and
DELETE methods. For example when user search for product we use GET call.
When user updates the data we call PUT by sending payload and get successful response back.

With every api call we send authenticated token to the server side.

Catalog UI

 ‹#›

Building Success Together®

Catalog UI

 ‹#›

Building Success Together®

Catalog UI

Building Success Together ®

Nisum Digital Services

Armine Grigoryan

