Commit ddaf5ad5 authored by Pinky Sabu's avatar Pinky Sabu

add LogicalRegression Approach

parents
{
"cells": [
{
"cell_type": "code",
"execution_count": 4,
"id": "a7699a2b",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sklearn.preprocessing import LabelEncoder\n",
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.metrics import accuracy_score,confusion_matrix"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "cd1645cc",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>mean_radius</th>\n",
" <th>mean_texture</th>\n",
" <th>mean_perimeter</th>\n",
" <th>mean_area</th>\n",
" <th>mean_smoothness</th>\n",
" <th>diagnosis</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>17.99</td>\n",
" <td>10.38</td>\n",
" <td>122.80</td>\n",
" <td>1001.0</td>\n",
" <td>0.11840</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>20.57</td>\n",
" <td>17.77</td>\n",
" <td>132.90</td>\n",
" <td>1326.0</td>\n",
" <td>0.08474</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>19.69</td>\n",
" <td>21.25</td>\n",
" <td>130.00</td>\n",
" <td>1203.0</td>\n",
" <td>0.10960</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>11.42</td>\n",
" <td>20.38</td>\n",
" <td>77.58</td>\n",
" <td>386.1</td>\n",
" <td>0.14250</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>20.29</td>\n",
" <td>14.34</td>\n",
" <td>135.10</td>\n",
" <td>1297.0</td>\n",
" <td>0.10030</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" mean_radius mean_texture mean_perimeter mean_area mean_smoothness \\\n",
"0 17.99 10.38 122.80 1001.0 0.11840 \n",
"1 20.57 17.77 132.90 1326.0 0.08474 \n",
"2 19.69 21.25 130.00 1203.0 0.10960 \n",
"3 11.42 20.38 77.58 386.1 0.14250 \n",
"4 20.29 14.34 135.10 1297.0 0.10030 \n",
"\n",
" diagnosis \n",
"0 0 \n",
"1 0 \n",
"2 0 \n",
"3 0 \n",
"4 0 "
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data=pd.read_csv(\"Breast_cancer_data_kaggle.csv\")\n",
"data.head()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "831b3aa1",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"mean_radius 0\n",
"mean_texture 0\n",
"mean_perimeter 0\n",
"mean_area 0\n",
"mean_smoothness 0\n",
"diagnosis 0\n",
"dtype: int64"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.isnull().sum()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d6b81e7e",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 9,
"id": "7bc8735c",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>mean_radius</th>\n",
" <th>mean_texture</th>\n",
" <th>mean_perimeter</th>\n",
" <th>mean_area</th>\n",
" <th>mean_smoothness</th>\n",
" <th>diagnosis</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>17.99</td>\n",
" <td>10.38</td>\n",
" <td>122.80</td>\n",
" <td>1001.0</td>\n",
" <td>0.11840</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>20.57</td>\n",
" <td>17.77</td>\n",
" <td>132.90</td>\n",
" <td>1326.0</td>\n",
" <td>0.08474</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>19.69</td>\n",
" <td>21.25</td>\n",
" <td>130.00</td>\n",
" <td>1203.0</td>\n",
" <td>0.10960</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>11.42</td>\n",
" <td>20.38</td>\n",
" <td>77.58</td>\n",
" <td>386.1</td>\n",
" <td>0.14250</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>20.29</td>\n",
" <td>14.34</td>\n",
" <td>135.10</td>\n",
" <td>1297.0</td>\n",
" <td>0.10030</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" mean_radius mean_texture mean_perimeter mean_area mean_smoothness \\\n",
"0 17.99 10.38 122.80 1001.0 0.11840 \n",
"1 20.57 17.77 132.90 1326.0 0.08474 \n",
"2 19.69 21.25 130.00 1203.0 0.10960 \n",
"3 11.42 20.38 77.58 386.1 0.14250 \n",
"4 20.29 14.34 135.10 1297.0 0.10030 \n",
"\n",
" diagnosis \n",
"0 0 \n",
"1 0 \n",
"2 0 \n",
"3 0 \n",
"4 0 "
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"encoder =LabelEncoder()\n",
"data=data.assign(diagnosis=encoder.fit_transform(data['diagnosis']))\n",
"data.head()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "baf849e2",
"metadata": {},
"outputs": [],
"source": [
"X= data.loc[:,'mean_radius':]\n",
"y=data['diagnosis']"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "6211bf28",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>mean_radius</th>\n",
" <th>mean_texture</th>\n",
" <th>mean_perimeter</th>\n",
" <th>mean_area</th>\n",
" <th>mean_smoothness</th>\n",
" <th>diagnosis</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>17.99</td>\n",
" <td>10.38</td>\n",
" <td>122.80</td>\n",
" <td>1001.0</td>\n",
" <td>0.11840</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>20.57</td>\n",
" <td>17.77</td>\n",
" <td>132.90</td>\n",
" <td>1326.0</td>\n",
" <td>0.08474</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>19.69</td>\n",
" <td>21.25</td>\n",
" <td>130.00</td>\n",
" <td>1203.0</td>\n",
" <td>0.10960</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>11.42</td>\n",
" <td>20.38</td>\n",
" <td>77.58</td>\n",
" <td>386.1</td>\n",
" <td>0.14250</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>20.29</td>\n",
" <td>14.34</td>\n",
" <td>135.10</td>\n",
" <td>1297.0</td>\n",
" <td>0.10030</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" mean_radius mean_texture mean_perimeter mean_area mean_smoothness \\\n",
"0 17.99 10.38 122.80 1001.0 0.11840 \n",
"1 20.57 17.77 132.90 1326.0 0.08474 \n",
"2 19.69 21.25 130.00 1203.0 0.10960 \n",
"3 11.42 20.38 77.58 386.1 0.14250 \n",
"4 20.29 14.34 135.10 1297.0 0.10030 \n",
"\n",
" diagnosis \n",
"0 0 \n",
"1 0 \n",
"2 0 \n",
"3 0 \n",
"4 0 "
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X.head()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "385ee841",
"metadata": {},
"outputs": [],
"source": [
"clf=LogisticRegression()\n",
"x_train,x_test,y_train,y_test=train_test_split(X,y ,test_size=.3)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "b0f51bf9",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/PSabu/opt/anaconda3/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:814: ConvergenceWarning: lbfgs failed to converge (status=1):\n",
"STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n",
"\n",
"Increase the number of iterations (max_iter) or scale the data as shown in:\n",
" https://scikit-learn.org/stable/modules/preprocessing.html\n",
"Please also refer to the documentation for alternative solver options:\n",
" https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n",
" n_iter_i = _check_optimize_result(\n"
]
},
{
"data": {
"text/plain": [
"LogisticRegression()"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"clf.fit(x_train,y_train)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "70855042",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,\n",
" 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0,\n",
" 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0,\n",
" 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1,\n",
" 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1,\n",
" 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0,\n",
" 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1,\n",
" 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1])"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"y_pred=clf.predict(x_test)\n",
"y_pred"
]
},
{
"cell_type": "code",
"execution_count": 39,
"id": "8072530c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[5.90126756e-03, 9.94098732e-01],\n",
" [9.99336069e-01, 6.63931287e-04],\n",
" [1.86983122e-02, 9.81301688e-01],\n",
" [3.11459710e-02, 9.68854029e-01],\n",
" [8.48092766e-03, 9.91519072e-01],\n",
" [4.72803698e-03, 9.95271963e-01],\n",
" [9.89974132e-01, 1.00258680e-02],\n",
" [9.99858148e-01, 1.41851732e-04],\n",
" [7.87106188e-01, 2.12893812e-01],\n",
" [1.42283399e-02, 9.85771660e-01],\n",
" [3.95739640e-02, 9.60426036e-01],\n",
" [9.62840406e-01, 3.71595945e-02],\n",
" [9.99940356e-01, 5.96440906e-05],\n",
" [1.04520449e-02, 9.89547955e-01],\n",
" [7.65031157e-02, 9.23496884e-01],\n",
" [1.63338541e-02, 9.83666146e-01],\n",
" [4.82478788e-03, 9.95175212e-01],\n",
" [1.83868446e-02, 9.81613155e-01],\n",
" [3.30060822e-02, 9.66993918e-01],\n",
" [7.02330254e-03, 9.92976697e-01],\n",
" [1.38370818e-02, 9.86162918e-01],\n",
" [2.81778904e-02, 9.71822110e-01],\n",
" [9.99987787e-01, 1.22125700e-05],\n",
" [7.92529995e-02, 9.20747001e-01],\n",
" [8.62563332e-01, 1.37436668e-01],\n",
" [7.74574720e-03, 9.92254253e-01],\n",
" [1.34096401e-02, 9.86590360e-01],\n",
" [9.99995773e-01, 4.22677812e-06],\n",
" [2.25316794e-02, 9.77468321e-01],\n",
" [9.70472537e-01, 2.95274626e-02],\n",
" [4.98654596e-03, 9.95013454e-01],\n",
" [9.99786118e-01, 2.13881853e-04],\n",
" [1.90183436e-03, 9.98098166e-01],\n",
" [6.31879103e-02, 9.36812090e-01],\n",
" [3.44831581e-03, 9.96551684e-01],\n",
" [3.48271737e-02, 9.65172826e-01],\n",
" [1.15785362e-02, 9.88421464e-01],\n",
" [9.99995171e-01, 4.82904781e-06],\n",
" [7.12026938e-01, 2.87973062e-01],\n",
" [8.69751415e-03, 9.91302486e-01],\n",
" [9.85357537e-01, 1.46424633e-02],\n",
" [1.62670122e-02, 9.83732988e-01],\n",
" [8.07302866e-03, 9.91926971e-01],\n",
" [9.99969684e-01, 3.03164631e-05],\n",
" [9.61523556e-02, 9.03847644e-01],\n",
" [8.27029574e-01, 1.72970426e-01],\n",
" [9.81387179e-01, 1.86128209e-02],\n",
" [1.60600187e-02, 9.83939981e-01],\n",
" [1.34288873e-02, 9.86571113e-01],\n",
" [8.65032870e-03, 9.91349671e-01],\n",
" [1.18820948e-02, 9.88117905e-01],\n",
" [1.42784622e-02, 9.85721538e-01],\n",
" [9.99828629e-01, 1.71370766e-04],\n",
" [9.76907206e-03, 9.90230928e-01],\n",
" [9.83264802e-01, 1.67351984e-02],\n",
" [5.14289098e-03, 9.94857109e-01],\n",
" [8.81376930e-01, 1.18623070e-01],\n",
" [9.93842038e-01, 6.15796182e-03],\n",
" [2.06244960e-02, 9.79375504e-01],\n",
" [9.99177792e-01, 8.22208349e-04],\n",
" [3.23575630e-02, 9.67642437e-01],\n",
" [1.19962805e-01, 8.80037195e-01],\n",
" [6.68606380e-03, 9.93313936e-01],\n",
" [5.38226340e-03, 9.94617737e-01],\n",
" [9.94312715e-01, 5.68728508e-03],\n",
" [5.83471736e-02, 9.41652826e-01],\n",
" [9.26456624e-03, 9.90735434e-01],\n",
" [9.44125113e-01, 5.58748873e-02],\n",
" [2.71116481e-02, 9.72888352e-01],\n",
" [4.90110568e-03, 9.95098894e-01],\n",
" [9.35888612e-01, 6.41113875e-02],\n",
" [9.87219192e-01, 1.27808078e-02],\n",
" [2.70738906e-03, 9.97292611e-01],\n",
" [9.63149907e-01, 3.68500931e-02],\n",
" [9.99953739e-01, 4.62614971e-05],\n",
" [6.40722847e-01, 3.59277153e-01],\n",
" [1.73226339e-02, 9.82677366e-01],\n",
" [2.05762471e-02, 9.79423753e-01],\n",
" [3.91478133e-02, 9.60852187e-01],\n",
" [8.49970149e-01, 1.50029851e-01],\n",
" [3.75931771e-02, 9.62406823e-01],\n",
" [2.23735425e-02, 9.77626457e-01],\n",
" [5.66175119e-03, 9.94338249e-01],\n",
" [9.34231414e-01, 6.57685863e-02],\n",
" [1.31498238e-02, 9.86850176e-01],\n",
" [1.70276828e-02, 9.82972317e-01],\n",
" [9.19731919e-03, 9.90802681e-01],\n",
" [1.37533532e-02, 9.86246647e-01],\n",
" [9.99585492e-01, 4.14507707e-04],\n",
" [4.52766458e-02, 9.54723354e-01],\n",
" [9.91956788e-01, 8.04321248e-03],\n",
" [9.99582631e-01, 4.17369265e-04],\n",
" [1.16050101e-02, 9.88394990e-01],\n",
" [8.78844390e-03, 9.91211556e-01],\n",
" [1.27093726e-02, 9.87290627e-01],\n",
" [1.11969444e-02, 9.88803056e-01],\n",
" [6.10906963e-03, 9.93890930e-01],\n",
" [2.79366207e-02, 9.72063379e-01],\n",
" [9.99999999e-01, 9.92100466e-10],\n",
" [7.54993536e-03, 9.92450065e-01],\n",
" [9.99525800e-01, 4.74200292e-04],\n",
" [9.93235561e-01, 6.76443900e-03],\n",
" [3.08893180e-03, 9.96911068e-01],\n",
" [1.15344685e-02, 9.88465532e-01],\n",
" [6.89829455e-03, 9.93101705e-01],\n",
" [1.52039029e-02, 9.84796097e-01],\n",
" [3.77288334e-02, 9.62271167e-01],\n",
" [1.89234546e-02, 9.81076545e-01],\n",
" [8.91289899e-01, 1.08710101e-01],\n",
" [5.29450036e-03, 9.94705500e-01],\n",
" [9.88122931e-01, 1.18770689e-02],\n",
" [1.77954885e-02, 9.82204512e-01],\n",
" [1.49793338e-01, 8.50206662e-01],\n",
" [9.86766007e-01, 1.32339932e-02],\n",
" [6.80573655e-03, 9.93194263e-01],\n",
" [8.87230288e-01, 1.12769712e-01],\n",
" [9.98790981e-01, 1.20901865e-03],\n",
" [9.27730603e-03, 9.90722694e-01],\n",
" [9.42390530e-01, 5.76094699e-02],\n",
" [9.97672597e-01, 2.32740317e-03],\n",
" [2.81933573e-02, 9.71806643e-01],\n",
" [1.65910523e-02, 9.83408948e-01],\n",
" [9.99999948e-01, 5.19271711e-08],\n",
" [1.26379676e-02, 9.87362032e-01],\n",
" [2.50776998e-02, 9.74922300e-01],\n",
" [2.95847359e-03, 9.97041526e-01],\n",
" [5.58595467e-03, 9.94414045e-01],\n",
" [9.53515134e-03, 9.90464849e-01],\n",
" [9.20229917e-01, 7.97700832e-02],\n",
" [4.78613596e-03, 9.95213864e-01],\n",
" [9.96340714e-01, 3.65928552e-03],\n",
" [9.99582479e-01, 4.17520652e-04],\n",
" [9.99440913e-01, 5.59086931e-04],\n",
" [6.89325917e-03, 9.93106741e-01],\n",
" [9.81517478e-01, 1.84825222e-02],\n",
" [1.09067003e-02, 9.89093300e-01],\n",
" [2.63908488e-02, 9.73609151e-01],\n",
" [1.65185253e-02, 9.83481475e-01],\n",
" [7.24373407e-01, 2.75626593e-01],\n",
" [9.55665817e-01, 4.43341829e-02],\n",
" [9.04672314e-01, 9.53276860e-02],\n",
" [2.46990938e-03, 9.97530091e-01],\n",
" [9.99437569e-01, 5.62431407e-04],\n",
" [2.52301917e-02, 9.74769808e-01],\n",
" [9.99997584e-01, 2.41641383e-06],\n",
" [9.99846338e-01, 1.53662312e-04],\n",
" [6.74759482e-03, 9.93252405e-01],\n",
" [9.71237023e-01, 2.87629765e-02],\n",
" [3.23429271e-02, 9.67657073e-01],\n",
" [1.59401812e-02, 9.84059819e-01],\n",
" [9.54145232e-01, 4.58547679e-02],\n",
" [3.82693762e-03, 9.96173062e-01],\n",
" [2.30690778e-03, 9.97693092e-01],\n",
" [9.99937270e-01, 6.27303292e-05],\n",
" [1.30378248e-02, 9.86962175e-01],\n",
" [1.17817686e-02, 9.88218231e-01],\n",
" [4.33370235e-03, 9.95666298e-01],\n",
" [3.37125925e-02, 9.66287408e-01],\n",
" [6.90794736e-03, 9.93092053e-01],\n",
" [3.51004613e-03, 9.96489954e-01],\n",
" [4.08851039e-03, 9.95911490e-01],\n",
" [9.55128087e-01, 4.48719125e-02],\n",
" [7.24861856e-02, 9.27513814e-01],\n",
" [1.88032034e-02, 9.81196797e-01],\n",
" [9.61568184e-02, 9.03843182e-01],\n",
" [1.08714886e-02, 9.89128511e-01],\n",
" [2.18322818e-01, 7.81677182e-01],\n",
" [8.65414084e-03, 9.91345859e-01],\n",
" [2.01507248e-02, 9.79849275e-01],\n",
" [2.68547069e-02, 9.73145293e-01],\n",
" [2.45455007e-02, 9.75454499e-01]])"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"y_pred=clf.predict_proba(x_test)\n",
"y_pred"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "10d212a3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"y_pred:[0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 0 0 0 1 0\n",
" 1 1 0 0 1 0 0 1 1 0 1 0 0 1 0 1 1 1 1 1 0 1 0 1 0 0 1 1 0 1 1 0 0 1 1 1 0\n",
" 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 0 1 1 1\n",
" 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 0 1 0 1 1 0 0\n",
" 1 0 1 1 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 1 0 1]\n",
"y_test:75 0\n",
"253 0\n",
"87 0\n",
"70 0\n",
"153 1\n",
" ..\n",
"291 1\n",
"358 1\n",
"111 1\n",
"121 0\n",
"429 1\n",
"Name: diagnosis, Length: 171, dtype: int64\n"
]
},
{
"data": {
"text/plain": [
"array([[ 65, 0],\n",
" [ 0, 106]])"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print(f\"y_pred:{y_pred}\")\n",
"print(f\"y_test:{y_test}\")\n",
"y_pred=clf.predict(x_test)\n",
"confusion_matrix(y_test,y_pred)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "708999be",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1.0"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"accuracy_score(y_test,y_pred)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment