Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
P
pythondatascience
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Pinky Sabu
pythondatascience
Commits
ddaf5ad5
Commit
ddaf5ad5
authored
Nov 18, 2022
by
Pinky Sabu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
add LogicalRegression Approach
parents
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
754 additions
and
0 deletions
+754
-0
Logical Regression.ipynb
Logical Regression.ipynb
+754
-0
No files found.
Logical Regression.ipynb
0 → 100644
View file @
ddaf5ad5
{
"cells": [
{
"cell_type": "code",
"execution_count": 4,
"id": "a7699a2b",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sklearn.preprocessing import LabelEncoder\n",
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.metrics import accuracy_score,confusion_matrix"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "cd1645cc",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>mean_radius</th>\n",
" <th>mean_texture</th>\n",
" <th>mean_perimeter</th>\n",
" <th>mean_area</th>\n",
" <th>mean_smoothness</th>\n",
" <th>diagnosis</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>17.99</td>\n",
" <td>10.38</td>\n",
" <td>122.80</td>\n",
" <td>1001.0</td>\n",
" <td>0.11840</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>20.57</td>\n",
" <td>17.77</td>\n",
" <td>132.90</td>\n",
" <td>1326.0</td>\n",
" <td>0.08474</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>19.69</td>\n",
" <td>21.25</td>\n",
" <td>130.00</td>\n",
" <td>1203.0</td>\n",
" <td>0.10960</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>11.42</td>\n",
" <td>20.38</td>\n",
" <td>77.58</td>\n",
" <td>386.1</td>\n",
" <td>0.14250</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>20.29</td>\n",
" <td>14.34</td>\n",
" <td>135.10</td>\n",
" <td>1297.0</td>\n",
" <td>0.10030</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" mean_radius mean_texture mean_perimeter mean_area mean_smoothness \\\n",
"0 17.99 10.38 122.80 1001.0 0.11840 \n",
"1 20.57 17.77 132.90 1326.0 0.08474 \n",
"2 19.69 21.25 130.00 1203.0 0.10960 \n",
"3 11.42 20.38 77.58 386.1 0.14250 \n",
"4 20.29 14.34 135.10 1297.0 0.10030 \n",
"\n",
" diagnosis \n",
"0 0 \n",
"1 0 \n",
"2 0 \n",
"3 0 \n",
"4 0 "
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data=pd.read_csv(\"Breast_cancer_data_kaggle.csv\")\n",
"data.head()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "831b3aa1",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"mean_radius 0\n",
"mean_texture 0\n",
"mean_perimeter 0\n",
"mean_area 0\n",
"mean_smoothness 0\n",
"diagnosis 0\n",
"dtype: int64"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.isnull().sum()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d6b81e7e",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 9,
"id": "7bc8735c",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>mean_radius</th>\n",
" <th>mean_texture</th>\n",
" <th>mean_perimeter</th>\n",
" <th>mean_area</th>\n",
" <th>mean_smoothness</th>\n",
" <th>diagnosis</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>17.99</td>\n",
" <td>10.38</td>\n",
" <td>122.80</td>\n",
" <td>1001.0</td>\n",
" <td>0.11840</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>20.57</td>\n",
" <td>17.77</td>\n",
" <td>132.90</td>\n",
" <td>1326.0</td>\n",
" <td>0.08474</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>19.69</td>\n",
" <td>21.25</td>\n",
" <td>130.00</td>\n",
" <td>1203.0</td>\n",
" <td>0.10960</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>11.42</td>\n",
" <td>20.38</td>\n",
" <td>77.58</td>\n",
" <td>386.1</td>\n",
" <td>0.14250</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>20.29</td>\n",
" <td>14.34</td>\n",
" <td>135.10</td>\n",
" <td>1297.0</td>\n",
" <td>0.10030</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" mean_radius mean_texture mean_perimeter mean_area mean_smoothness \\\n",
"0 17.99 10.38 122.80 1001.0 0.11840 \n",
"1 20.57 17.77 132.90 1326.0 0.08474 \n",
"2 19.69 21.25 130.00 1203.0 0.10960 \n",
"3 11.42 20.38 77.58 386.1 0.14250 \n",
"4 20.29 14.34 135.10 1297.0 0.10030 \n",
"\n",
" diagnosis \n",
"0 0 \n",
"1 0 \n",
"2 0 \n",
"3 0 \n",
"4 0 "
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"encoder =LabelEncoder()\n",
"data=data.assign(diagnosis=encoder.fit_transform(data['diagnosis']))\n",
"data.head()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "baf849e2",
"metadata": {},
"outputs": [],
"source": [
"X= data.loc[:,'mean_radius':]\n",
"y=data['diagnosis']"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "6211bf28",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>mean_radius</th>\n",
" <th>mean_texture</th>\n",
" <th>mean_perimeter</th>\n",
" <th>mean_area</th>\n",
" <th>mean_smoothness</th>\n",
" <th>diagnosis</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>17.99</td>\n",
" <td>10.38</td>\n",
" <td>122.80</td>\n",
" <td>1001.0</td>\n",
" <td>0.11840</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>20.57</td>\n",
" <td>17.77</td>\n",
" <td>132.90</td>\n",
" <td>1326.0</td>\n",
" <td>0.08474</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>19.69</td>\n",
" <td>21.25</td>\n",
" <td>130.00</td>\n",
" <td>1203.0</td>\n",
" <td>0.10960</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>11.42</td>\n",
" <td>20.38</td>\n",
" <td>77.58</td>\n",
" <td>386.1</td>\n",
" <td>0.14250</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>20.29</td>\n",
" <td>14.34</td>\n",
" <td>135.10</td>\n",
" <td>1297.0</td>\n",
" <td>0.10030</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" mean_radius mean_texture mean_perimeter mean_area mean_smoothness \\\n",
"0 17.99 10.38 122.80 1001.0 0.11840 \n",
"1 20.57 17.77 132.90 1326.0 0.08474 \n",
"2 19.69 21.25 130.00 1203.0 0.10960 \n",
"3 11.42 20.38 77.58 386.1 0.14250 \n",
"4 20.29 14.34 135.10 1297.0 0.10030 \n",
"\n",
" diagnosis \n",
"0 0 \n",
"1 0 \n",
"2 0 \n",
"3 0 \n",
"4 0 "
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X.head()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "385ee841",
"metadata": {},
"outputs": [],
"source": [
"clf=LogisticRegression()\n",
"x_train,x_test,y_train,y_test=train_test_split(X,y ,test_size=.3)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "b0f51bf9",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/PSabu/opt/anaconda3/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:814: ConvergenceWarning: lbfgs failed to converge (status=1):\n",
"STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n",
"\n",
"Increase the number of iterations (max_iter) or scale the data as shown in:\n",
" https://scikit-learn.org/stable/modules/preprocessing.html\n",
"Please also refer to the documentation for alternative solver options:\n",
" https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n",
" n_iter_i = _check_optimize_result(\n"
]
},
{
"data": {
"text/plain": [
"LogisticRegression()"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"clf.fit(x_train,y_train)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "70855042",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,\n",
" 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0,\n",
" 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0,\n",
" 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1,\n",
" 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1,\n",
" 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0,\n",
" 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1,\n",
" 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1])"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"y_pred=clf.predict(x_test)\n",
"y_pred"
]
},
{
"cell_type": "code",
"execution_count": 39,
"id": "8072530c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[5.90126756e-03, 9.94098732e-01],\n",
" [9.99336069e-01, 6.63931287e-04],\n",
" [1.86983122e-02, 9.81301688e-01],\n",
" [3.11459710e-02, 9.68854029e-01],\n",
" [8.48092766e-03, 9.91519072e-01],\n",
" [4.72803698e-03, 9.95271963e-01],\n",
" [9.89974132e-01, 1.00258680e-02],\n",
" [9.99858148e-01, 1.41851732e-04],\n",
" [7.87106188e-01, 2.12893812e-01],\n",
" [1.42283399e-02, 9.85771660e-01],\n",
" [3.95739640e-02, 9.60426036e-01],\n",
" [9.62840406e-01, 3.71595945e-02],\n",
" [9.99940356e-01, 5.96440906e-05],\n",
" [1.04520449e-02, 9.89547955e-01],\n",
" [7.65031157e-02, 9.23496884e-01],\n",
" [1.63338541e-02, 9.83666146e-01],\n",
" [4.82478788e-03, 9.95175212e-01],\n",
" [1.83868446e-02, 9.81613155e-01],\n",
" [3.30060822e-02, 9.66993918e-01],\n",
" [7.02330254e-03, 9.92976697e-01],\n",
" [1.38370818e-02, 9.86162918e-01],\n",
" [2.81778904e-02, 9.71822110e-01],\n",
" [9.99987787e-01, 1.22125700e-05],\n",
" [7.92529995e-02, 9.20747001e-01],\n",
" [8.62563332e-01, 1.37436668e-01],\n",
" [7.74574720e-03, 9.92254253e-01],\n",
" [1.34096401e-02, 9.86590360e-01],\n",
" [9.99995773e-01, 4.22677812e-06],\n",
" [2.25316794e-02, 9.77468321e-01],\n",
" [9.70472537e-01, 2.95274626e-02],\n",
" [4.98654596e-03, 9.95013454e-01],\n",
" [9.99786118e-01, 2.13881853e-04],\n",
" [1.90183436e-03, 9.98098166e-01],\n",
" [6.31879103e-02, 9.36812090e-01],\n",
" [3.44831581e-03, 9.96551684e-01],\n",
" [3.48271737e-02, 9.65172826e-01],\n",
" [1.15785362e-02, 9.88421464e-01],\n",
" [9.99995171e-01, 4.82904781e-06],\n",
" [7.12026938e-01, 2.87973062e-01],\n",
" [8.69751415e-03, 9.91302486e-01],\n",
" [9.85357537e-01, 1.46424633e-02],\n",
" [1.62670122e-02, 9.83732988e-01],\n",
" [8.07302866e-03, 9.91926971e-01],\n",
" [9.99969684e-01, 3.03164631e-05],\n",
" [9.61523556e-02, 9.03847644e-01],\n",
" [8.27029574e-01, 1.72970426e-01],\n",
" [9.81387179e-01, 1.86128209e-02],\n",
" [1.60600187e-02, 9.83939981e-01],\n",
" [1.34288873e-02, 9.86571113e-01],\n",
" [8.65032870e-03, 9.91349671e-01],\n",
" [1.18820948e-02, 9.88117905e-01],\n",
" [1.42784622e-02, 9.85721538e-01],\n",
" [9.99828629e-01, 1.71370766e-04],\n",
" [9.76907206e-03, 9.90230928e-01],\n",
" [9.83264802e-01, 1.67351984e-02],\n",
" [5.14289098e-03, 9.94857109e-01],\n",
" [8.81376930e-01, 1.18623070e-01],\n",
" [9.93842038e-01, 6.15796182e-03],\n",
" [2.06244960e-02, 9.79375504e-01],\n",
" [9.99177792e-01, 8.22208349e-04],\n",
" [3.23575630e-02, 9.67642437e-01],\n",
" [1.19962805e-01, 8.80037195e-01],\n",
" [6.68606380e-03, 9.93313936e-01],\n",
" [5.38226340e-03, 9.94617737e-01],\n",
" [9.94312715e-01, 5.68728508e-03],\n",
" [5.83471736e-02, 9.41652826e-01],\n",
" [9.26456624e-03, 9.90735434e-01],\n",
" [9.44125113e-01, 5.58748873e-02],\n",
" [2.71116481e-02, 9.72888352e-01],\n",
" [4.90110568e-03, 9.95098894e-01],\n",
" [9.35888612e-01, 6.41113875e-02],\n",
" [9.87219192e-01, 1.27808078e-02],\n",
" [2.70738906e-03, 9.97292611e-01],\n",
" [9.63149907e-01, 3.68500931e-02],\n",
" [9.99953739e-01, 4.62614971e-05],\n",
" [6.40722847e-01, 3.59277153e-01],\n",
" [1.73226339e-02, 9.82677366e-01],\n",
" [2.05762471e-02, 9.79423753e-01],\n",
" [3.91478133e-02, 9.60852187e-01],\n",
" [8.49970149e-01, 1.50029851e-01],\n",
" [3.75931771e-02, 9.62406823e-01],\n",
" [2.23735425e-02, 9.77626457e-01],\n",
" [5.66175119e-03, 9.94338249e-01],\n",
" [9.34231414e-01, 6.57685863e-02],\n",
" [1.31498238e-02, 9.86850176e-01],\n",
" [1.70276828e-02, 9.82972317e-01],\n",
" [9.19731919e-03, 9.90802681e-01],\n",
" [1.37533532e-02, 9.86246647e-01],\n",
" [9.99585492e-01, 4.14507707e-04],\n",
" [4.52766458e-02, 9.54723354e-01],\n",
" [9.91956788e-01, 8.04321248e-03],\n",
" [9.99582631e-01, 4.17369265e-04],\n",
" [1.16050101e-02, 9.88394990e-01],\n",
" [8.78844390e-03, 9.91211556e-01],\n",
" [1.27093726e-02, 9.87290627e-01],\n",
" [1.11969444e-02, 9.88803056e-01],\n",
" [6.10906963e-03, 9.93890930e-01],\n",
" [2.79366207e-02, 9.72063379e-01],\n",
" [9.99999999e-01, 9.92100466e-10],\n",
" [7.54993536e-03, 9.92450065e-01],\n",
" [9.99525800e-01, 4.74200292e-04],\n",
" [9.93235561e-01, 6.76443900e-03],\n",
" [3.08893180e-03, 9.96911068e-01],\n",
" [1.15344685e-02, 9.88465532e-01],\n",
" [6.89829455e-03, 9.93101705e-01],\n",
" [1.52039029e-02, 9.84796097e-01],\n",
" [3.77288334e-02, 9.62271167e-01],\n",
" [1.89234546e-02, 9.81076545e-01],\n",
" [8.91289899e-01, 1.08710101e-01],\n",
" [5.29450036e-03, 9.94705500e-01],\n",
" [9.88122931e-01, 1.18770689e-02],\n",
" [1.77954885e-02, 9.82204512e-01],\n",
" [1.49793338e-01, 8.50206662e-01],\n",
" [9.86766007e-01, 1.32339932e-02],\n",
" [6.80573655e-03, 9.93194263e-01],\n",
" [8.87230288e-01, 1.12769712e-01],\n",
" [9.98790981e-01, 1.20901865e-03],\n",
" [9.27730603e-03, 9.90722694e-01],\n",
" [9.42390530e-01, 5.76094699e-02],\n",
" [9.97672597e-01, 2.32740317e-03],\n",
" [2.81933573e-02, 9.71806643e-01],\n",
" [1.65910523e-02, 9.83408948e-01],\n",
" [9.99999948e-01, 5.19271711e-08],\n",
" [1.26379676e-02, 9.87362032e-01],\n",
" [2.50776998e-02, 9.74922300e-01],\n",
" [2.95847359e-03, 9.97041526e-01],\n",
" [5.58595467e-03, 9.94414045e-01],\n",
" [9.53515134e-03, 9.90464849e-01],\n",
" [9.20229917e-01, 7.97700832e-02],\n",
" [4.78613596e-03, 9.95213864e-01],\n",
" [9.96340714e-01, 3.65928552e-03],\n",
" [9.99582479e-01, 4.17520652e-04],\n",
" [9.99440913e-01, 5.59086931e-04],\n",
" [6.89325917e-03, 9.93106741e-01],\n",
" [9.81517478e-01, 1.84825222e-02],\n",
" [1.09067003e-02, 9.89093300e-01],\n",
" [2.63908488e-02, 9.73609151e-01],\n",
" [1.65185253e-02, 9.83481475e-01],\n",
" [7.24373407e-01, 2.75626593e-01],\n",
" [9.55665817e-01, 4.43341829e-02],\n",
" [9.04672314e-01, 9.53276860e-02],\n",
" [2.46990938e-03, 9.97530091e-01],\n",
" [9.99437569e-01, 5.62431407e-04],\n",
" [2.52301917e-02, 9.74769808e-01],\n",
" [9.99997584e-01, 2.41641383e-06],\n",
" [9.99846338e-01, 1.53662312e-04],\n",
" [6.74759482e-03, 9.93252405e-01],\n",
" [9.71237023e-01, 2.87629765e-02],\n",
" [3.23429271e-02, 9.67657073e-01],\n",
" [1.59401812e-02, 9.84059819e-01],\n",
" [9.54145232e-01, 4.58547679e-02],\n",
" [3.82693762e-03, 9.96173062e-01],\n",
" [2.30690778e-03, 9.97693092e-01],\n",
" [9.99937270e-01, 6.27303292e-05],\n",
" [1.30378248e-02, 9.86962175e-01],\n",
" [1.17817686e-02, 9.88218231e-01],\n",
" [4.33370235e-03, 9.95666298e-01],\n",
" [3.37125925e-02, 9.66287408e-01],\n",
" [6.90794736e-03, 9.93092053e-01],\n",
" [3.51004613e-03, 9.96489954e-01],\n",
" [4.08851039e-03, 9.95911490e-01],\n",
" [9.55128087e-01, 4.48719125e-02],\n",
" [7.24861856e-02, 9.27513814e-01],\n",
" [1.88032034e-02, 9.81196797e-01],\n",
" [9.61568184e-02, 9.03843182e-01],\n",
" [1.08714886e-02, 9.89128511e-01],\n",
" [2.18322818e-01, 7.81677182e-01],\n",
" [8.65414084e-03, 9.91345859e-01],\n",
" [2.01507248e-02, 9.79849275e-01],\n",
" [2.68547069e-02, 9.73145293e-01],\n",
" [2.45455007e-02, 9.75454499e-01]])"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"y_pred=clf.predict_proba(x_test)\n",
"y_pred"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "10d212a3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"y_pred:[0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 0 0 0 1 0\n",
" 1 1 0 0 1 0 0 1 1 0 1 0 0 1 0 1 1 1 1 1 0 1 0 1 0 0 1 1 0 1 1 0 0 1 1 1 0\n",
" 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 0 1 1 1\n",
" 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 0 1 0 1 1 0 0\n",
" 1 0 1 1 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 1 0 1]\n",
"y_test:75 0\n",
"253 0\n",
"87 0\n",
"70 0\n",
"153 1\n",
" ..\n",
"291 1\n",
"358 1\n",
"111 1\n",
"121 0\n",
"429 1\n",
"Name: diagnosis, Length: 171, dtype: int64\n"
]
},
{
"data": {
"text/plain": [
"array([[ 65, 0],\n",
" [ 0, 106]])"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print(f\"y_pred:{y_pred}\")\n",
"print(f\"y_test:{y_test}\")\n",
"y_pred=clf.predict(x_test)\n",
"confusion_matrix(y_test,y_pred)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "708999be",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1.0"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"accuracy_score(y_test,y_pred)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment